热点新闻
跟着Nature学作图:R语言ggplot2箱线图叠加蜂群图完整示例
2023-07-07 03:41  浏览:909  搜索引擎搜索“手机速企网”
温馨提示:信息一旦丢失不一定找得到,请务必收藏信息以备急用!本站所有信息均是注册会员发布如遇到侵权请联系文章中的联系方式或客服删除!
联系我时,请说明是在手机速企网看到的信息,谢谢。
展会发布 展会网站大全 报名观展合作 软文发布

论文

Graph pangenome captures missing heritability and empowers tomato breeding

https://www.nature.com/articles/s41586-022-04808-9#MOESM8

没有找到论文里的作图的代码,但是找到了部分做图数据,我们可以用论文中提供的原始数据模仿出论文中的图

今天的推文重复一下论文中的 Figure4b Figure4c 箱线图叠加蜂群图

Figure4b的部分数据截图




image.png

读取数据

library(readxl) dat.fig4b<-read_excel("data/20220711/41586_2022_4808_MOESM8_ESM.xlsx", sheet = "Fig4b", skip = 1) head(dat.fig4b)

作图代码

(ggplot2) library(latex2exp) library(ggbeeswarm) segment.data<-data.frame(x=c(0.8,1.8,2.8), xend=c(1.2,2.2,3.2), y=c(73,97,83)+1, yend=c(73,97,83)+1) ggplot(data=dat.fig4b,aes(x=VarID, y=`Standardized gene expression`, color=Genotype))+ geom_boxplot(show.legend = FALSE)+ geom_beeswarm(dodge.width = 0.8,shape=21)+ theme_bw()+ theme(panel.grid = element_blank(), legend.position = c(0.1,0.95), legend.title = element_blank(), legend.background = element_rect(fill="transparent"), legend.key = element_rect(fill="transparent"))+ scale_y_continuous(breaks = c(-50,0,50,100), limits = c(-50,100))+ scale_x_discrete(labels=paste0("SV",unique(dat.fig4b$VarID)))+ labs(x=NULL)+ annotate(geom = "text",x=0.8,y=70,label="(n=177)")+ annotate(geom = "text",x=1.2,y=45,label="(n=9)")+ annotate(geom = "text",x=1.8,y=60,label="(n=174)")+ annotate(geom = "text",x=2.2,y=95,label="(n=14)")+ annotate(geom = "text",x=2.8,y=60,label="(n=155)")+ annotate(geom = "text",x=3.2,y=80,label="(n=134)")+ geom_segment(data=segment.data, aes(x=x,xend=xend,y=y,yend=yend), inherit.aes = FALSE)+ annotate(geom = "text",x=1,y=76, label=TeX(r"(\textit{P} = 0.76)"),vjust=0)+ annotate(geom = "text",x=2,y=99.5, label=TeX(r"(\textit{P} = 8.37 \times 10${^-}{^3}$)"),vjust=0)+ annotate(geom = "text",x=3,y=85.5, label=TeX(r"(\textit{P} = 6.84 \times 10${^-}{^8}$)"),vjust=0)


image.png

Figure4c数据的部分截图




image.png

读取数据

library(readxl) dat.fig4c<-read_excel("data/20220711/41586_2022_4808_MOESM8_ESM.xlsx", sheet = "Fig4c", skip = 1) head(dat.fig4c)

作图代码

dat.fig4c$Type<-factor(dat.fig4c$Type, levels = c("non-favourable","favourable")) dat.fig4c$Variation<-factor(dat.fig4c$Variation, levels = c("SV2","SV4","SV2+SV4")) x<-c(0.7,1.3,1.7,2.3,2.7,3.3) y<-c(0.24,0.42,0.15,0.42,0.24,0.42) label_z<-c(" = 174)"," = 14)"," = 155)"," = 34)"," = 178)"," = 10)") ggplot(data = dat.fig4c, aes(x=Variation,y=BLUP))+ geom_boxplot(aes(color=Type),show.legend = FALSE)+ geom_beeswarm(aes(color=Type), dodge.width = 0.8,shape=21)+ scale_color_manual(values = c("#648fff","#d36b1c"), name="", label=c("Non-favourable alleles", "Favourable alleles"))+ scale_x_discrete(label=c("SV2_44168216", "SV4_54067283", "Both"))+ labs(x=NULL,y="BLUP of SSC")+ theme_bw()+ theme(panel.grid = element_blank(), legend.position = "bottom", legend.justification = c(0,0)) -> p2.1 for (i in 1:6){ p2.1+ annotate(geom = "text",x=x[i],y=y[i],label=TeX(r"((\textit{n})"), vjust=0,hjust=1) -> p2.1 } for (i in 1:6){ p2.1+ annotate(geom = "text",x=x[i],y=y[i],label=label_z[i], vjust=0,hjust=0) -> p2.1 } p2.1


image.png

最后是拼图

library(patchwork) p1+p2.1+ theme(legend.position = "none")


image.png

示例数据和代码可以自己到论文中获取,或者给本篇推文点赞,点击在看,然后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

发布人:e28c****    IP:117.173.23.***     举报/删稿
展会推荐
让朕来说2句
评论
收藏
点赞
转发